Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems

نویسندگان

  • Christophe Germay
  • Vincent Denoël
  • Emmanuel Detournay
چکیده

This paper extends the approach proposed by Richard et al (2007) to analyze the axial and torsional vibrations of drilling systems that are excited by the particular boundary conditions at the drag bit-rock interface, by basing the formulation of the model on a continuum representation of the drillstring rather than on a characterization of the drilling structure by a two degree of freedom system. These boundary conditions account for both cutting and frictional contact at the interface. The cutting process combined with the quasi-helicoidal motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring can be detected. In particular, stickslip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

Analysis of the nonlinear axial vibrations of a cantilevered pipe conveying pulsating two-phase flow

The parametric resonance of the axial vibrations of a cantilever pipe conveying harmonically perturbed two-phase flow is investigated using the method of multiple scale perturbation. The nonlinear coupled and uncoupled planar dynamics of the pipe are examined for a scenario when the axial vibration is parametrically excited by the pulsating frequencies of the two phases conveyed by the pipe. Aw...

متن کامل

An efficient analytical solution for nonlinear vibrations of a parametrically excited beam

An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...

متن کامل

Time-Varying Sliding Mode Adaptive Control for Rotary Drilling System

This paper presents a time-varying sliding mode adaptive controller in order to handle the stick-slip oscillation of nonlinear rotary drilling system. The time-varying sliding mode controller with strong robust has two time-varying sliding surfaces, one of them induced time-varying integral sliding mode control can control the transient stage of the rotary drilling system and ensure the system ...

متن کامل

Drilling Trajectory Prediction Model for Push-the-bit Rotary Steerable Bottom Hole Assembly

The study of rotary steering drilling technology is currently one of the hot topics in the drilling engineering field. It requires accurate well trajectory control instructions when rotary steerable tools are applied to achieve the well trajectory control goal. A drilling trajectory prediction model will benefit this progress. According to the continuous beam theory, a mechanical model of push-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008